10 Reference

Archetti, M., Richardson, A.D., O’Keefe, J. & Delpierre, N. (2013). Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. PloS one, 8, e57373.

Basler, D. (2016). Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 217, 10–21.

Betancourt, J.L., Schwarz, M., Breshears, D.D., Cayan, D.R., Dettinger, M., Inouye, D.W., Post, E. & Reed, B.C. (2005). Implementing a U.S. National Phenology Network. Eos, Transactions American Geophysical Union, 86, 538.

Blümel, K. & Chmielewski, F.-M. (2012). Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164, 10–19.

Brown, H.E., Huth, N.I., Holzworth, D.P., Teixeira, E.I., Zyskowski, R.F., Hargreaves, J.N.G. & Moot, D.J. (2014). Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environmental Modelling and Software, 62, 385–398.

Cannell, M.G.. G.R., Smith, R.I.I., Society, B.E. & Ecology, A. (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of applied Ecology, 20, 951–963.

Chen, M., Melaas, E.K., Gray, J.M., Friedl, M.A. & Richardson, A.D. (2016). A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Global Change Biology, 22, 3675–3688.

Chuine, I. (2000). A unified model for budburst of trees. Journal of theoretical biology, 207, 337–47.

Chuine, I. & Cour, P. (1999). Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytologist, 143, 339–349.

Chuine, I., Cour, P. & Rousseau, D.D. (1999). Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant, Cell and Environment, 22, 1–13.

Chuine, I., Garcia de Cortazar Atauri, I., Kramer, K. & Hänninen, H. (2013). Plant Development Models. In: (ed. Schwarz MD). , Dordrecht, Netherlands, pp. 275-293. Phenology: An Integrative Environmental Science (ed M.D. Schwartz), pp. 275–293. Springer, Dordrecht.

Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V. & Ladurie, E.L.R. (2004). Historical phenology: Grape ripening as a past climate indicator. Nature, 432, 289–290.

Clark, J.S., Salk, C., Melillo, J. & Mohan, J. (2014). Tree phenology responses to winter chilling, spring warming, at north and south range limits (N. Anten, Ed.). Functional Ecology, 28, 1344–1355.

Črepinšek, Z., Kajfež-Bogataj, L. & Bergant, K. (2006). Modelling of weather variability effect on fitophenology. Ecological Modelling, 194, 256–265.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E. V., Isaksen, L., K??llberg, P., K??hler, M., Matricardi, M., Mcnally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Th??paut, J.N. & Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

Fisher, J.I., Richardson, A.D. & Mustard, J.F. (2007). Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 13, 707–721.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. & Huang, X.M. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.

García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Jato, V., Silva, I., Trigo, M.M., Valencia, R. & Chuine, I. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology, 149, 256–262.

Gill, A.L., Gallinat, A.S., Sanders-DeMott, R., Rigden, A.J., Short Gianotti, D.J., Mantooth, J.A. & Templer, P.H. (2015). Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. Annals of Botany, 116, 875–888.

Hänninen, H. (1990). Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213, 1–47.

Hänninen, H. & Kramer, K. (2007). A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica, 41, 167–205.

Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D. & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113.

Hollinger, D.Y., Goltz, S.M., Davidson, E.A., Lee, J.T., Tu, K. & Valentine, H.T. (1999). Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biology, 5, 891–902.

Hufkens, K., Keenan, T.F., Flanagan, L.B., Scott, R.L., Bernacchi, C.J., Joo, E., Brunsell, N.A., Verfaillie, J. & Richardson, A.D. (2016). Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nature Climate Change.

Hunter, A.F. & Lechowicz, M.J. (1992). Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597–604.

Jeong, S. & Medvigy, D. (2014). Macroscale prediction of autumn leaf coloration throughout the continental United States. Global Ecology and Biogeography, 23, 1245–1254.

Keenan, T., Darby, B., Felts, E., Sonnentag, O., Friedl, M., Hufkens, K., O’Keefe, J., Munger, J.W., Toomey, M. & Richardson, A.D. (2014). Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecological Applications.

Klosterman, S.T., Hufkens, K., Gray, J.M., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., Norman, R., Friedl, M. a. & Richardson, a. D. (2014). Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences Discussions, 11, 2305–2342.

Kramer, K. (1994). Selecting a model to predict the onset of growth of Fagus-sylvatica. Journal of Applied Ecology, 31, 172–181.

Landsberg, J.J. (1974). Apple Fruit Bud Development and Growth; Analysis and an Empirical Model. Annals of Botany, 38, 1013–1023.

Lang, G., Early, J., Martin, G. & Darnell, R. (1987). Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience, 22, 371–377.

Laube, J., Sparks, T.H., Estrella, N., Höfler, J., Ankerst, D.P. & Menzel, A. (2013). Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, n/a-n/a.

Laube, J., Sparks, T.H., Estrella, N. & Menzel, A. (2014). Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytologist, 202, 350–355.

Leinonen, I., Repo, T. & Hänninen, H. (1997). Changing Environmental Effects on Frost Hardiness of Scots Pine During Dehardening. Annals of Botany, 79, 133–137.

Linkosalo, T., Häkkinen, R. & Hänninen, H. (2006). Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree physiology, 26, 1165–72.

Masle, J., Doussinault, G., Farquhar, G.D. & Sun, B. (1989). Foliar stage in wheat correlates better to photothermal time than to thermal time. Plant, Cell & Environment, 12, 235–247.

Mebane, W.R.J. & Sekhon, J.S. (2011). Genetic Optimization Using Derivatives: The rgenoud Package for R. Journal of Statistical Software, 42, 1–26.

Melaas, E.K., Friedl, M.A. & Richardson, A.D. (2016). Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Global Change Biology, 22, 792–805.

Migliavacca, M., Sonnentag, O., Keenan, T.F., Cescatti, a., O’Keefe, J. & Richardson, a. D. (2012). On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences, 9, 2063–2083.

Murray, M.B., Cannell, M.G.R. & Smith, R.I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693–700.

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

De Reaumur, R.-A. (1735). Observations du thermometre, faites a Paris pendant l′annee 1735 comparees avec celles qui onte faites sous la ligne et al′Ile de France,a Alger et en quelques-unes de nos ıles de l′Amerique. Memoires de l’Academie Royale des Sciences de Paris, 1735, 545–576.

Richardson, A.D., Anderson, R.S., AltafArain, M., Barr, A.G., Bohrer, G., Chen, G., Chen, J.M., Ciais, P., Davis, K.J., Desai, A.R., Dietze, M.C., Dragoni, D., Maayar, M. El, Garrity, S., Gough, C.M., Grant, R., Hollinger, D.Y., Margolis, H. a., McCaughey, H., Migliavacca, M., Monson, R.K., William Munger, J., Poulter, B., Raczka, B.M., Ricciuto, D.M., Sahoo, A.K., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J. & Xue, Y. (2011). Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program. Global Change Biology, n/a-n/a.

Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M. a, Gobron, N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J.W., Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R. & Varlagin, A. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 365, 3227–46.

Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Chen, M., Gray, J.M., Johnston, M.R., Keenan, T.F., Klosterman, S.T., Kosmala, M., Melaas, E.K., Friedl, M.A. & Frolking, S. (2018). Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data.

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O. & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173.

Rohde, R., Muller, R., Jacobsen, R., Muller, E., Groom, D. & Wickham, C. (2012). A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatic & Geostatistics: An Overview, 1, 1–7.

Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T.L., Seguin, B. & Tryjanowski, P. (2007). Climate change 2007: impacts, adaptation and vulnerability: Working Group II contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report (eds M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden & C.E. Hanson), p. 976.

Sakai, R.K., Fitzjarrald, D.R. & Moore, K.E. (1997). Detecting leaf area and surface resistance during transition seasons. Agricultural and Forest Meteorology, 84, 273–284.

Schaber, J. & Badeck, F.-W. (2003). Physiology-based phenology models for forest tree species in Germany. International journal of biometeorology, 47, 193–201.

Thornton, P.E., Thornton, M.M., Mayer, B.W., Wilhelmi, N., Wei, Y., Devarakonda, R. & Cook, R.B. (2017). Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. URL https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328

Toomey, M., Friedl, M. a, Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D.D., Bernacchi, C.J., Biraud, S.C. & Richardson, A.D. (2015). Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecological Applications, 25, 99–115.

Tsallis, C. & Stariolo, D.A. (1995). Generalized Simulated Annealing. 233, 395–406.

Tuck, S.L., Phillips, H.R.P., Hintzen, R.E., Scharlemann, J.P.W., Purvis, A. & Hudson, L.N. (2014). MODISTools - downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4, 4658–4668.

Vitasse, Y., Porté, A.J., Kremer, A., Michalet, R. & Delzon, S. (2009). Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia, 161, 187–98.

Wang, J.Y. (1960). A Critique of the Heat Unit Approach to Plant Response Studies. Ecology, 41, 785–790.

White, M. a., DeBeurs, K.M., Didan, K., Inouye, D.W., Richardson, A.D., Jensen, O.P., O’Keefe, J., Zhang, G., Nemani, R.R., van LEEUWEN, W.J.D., Brown, J.F., de WIT, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A.S., Kimball, J., Schwartz, M.D., Baldocchi, D.D., Lee, J.T. & Lauenroth, W.K. (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335–2359.

Xiang, Y., Gubian, S., Suomela, B. & Hoeng, J. (2013). Generalized simulated annealing for global optimization: the GenSA Package. R Journal, 5, 13–28.

Xin, Q., Broich, M., Zhu, P. & Gong, P. (2015). Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 161, 63–77.

Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C. & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475.